
Using Modularity Metrics as Design Features to
Guide Evolution in Genetic Programming

Anil Kumar Saini, Lee Spector

Abstract
Genetic Programming has advanced the state of the art in the field of software

synthesis. However, it has still not been able to produce some of the more com-
plex programs routinely written by humans. One of the heuristics human program-
mers use to build complex software is the organization of code into reusable mod-
ules. Ever since the introduction of the concept of Automatically Defined Functions
(ADFs) by John Koza in the 1990s, the genetic programming community has ex-
pressed the need to evolve modular programs, but despite this interest and several
subsequent innovations, the goal of evolving large-scale software built on reusable
modules has not yet been achieved. In this chapter, we first discuss two modular-
ity metrics—reuse and repetition—and describe the procedure for calculating them
from program code and corresponding execution traces. We then introduce the con-
cept of design features, which can be used in addition to error measures to guide
evolution, and demonstrate the use of modularity design features in parent selec-
tion.

1 Introduction

Modularity is ubiquitous in nature. Most of the systems around us — from our brains
to almost every software program ever written — are modular. In biological systems,
modularity contributes to the evolvability of an organism, which is its ability to

Anil Kumar Saini
College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA
e-mail: aks@cs.umass.edu

Lee Spector
Department of Computer Science, Amherst College, Amherst, MA, USA, and School of Cogni-
tive Science, Hampshire College, Amherst, MA, USA, and College of Information and Computer
Sciences, University of Massachusetts, Amherst, MA, USA e-mail: lspector@hampshire.edu

1

Preprint version of: Saini, Anil Kumar, and Lee Spector. "Using 
modularity metrics as design features to guide evolution in 
genetic programming." Genetic Programming Theory and 
Practice XVII. Springer, Cham, 2020. 165-180.



2 Anil Kumar Saini, Lee Spector

adapt to new surroundings over evolutionary time [1]. In software engineering, it is
advantageous in more obvious ways; parts of the program can be changed without
affecting the whole program, and modules can act as building blocks that can be
arranged in different orders or added on top of other modules to form entirely new
programs.

Although genetic programming can easily solve simple problems like the ones
found in introductory programming textbooks [2], evolving significantly more com-
plex programs that are nonetheless routinely written by humans is still well beyond
the state of the art. How do humans do it? Among other heuristics, humans fre-
quently use modularity to write complex programs; they organize their code into
units that can be reused again and again. Since modularity is pervasive in almost
all complex systems, it might be the ingredient that genetic programming needs to
evolve complex software.

In this chapter, we describe two modularity metrics that were inspired by sim-
ilar metrics in software engineering — reuse and repetition — and we show how
these metrics can be used to define design features that influence parent selection,
incentivizing the evolution of modular programs. Our experiments demonstrate that
the use of this technique can significantly decrease the average size of successful
programs.

In the following sections, we briefly present the history of prior work on mod-
ularity in genetic programming. We then present our modularity metrics and the
methods by which they can be calculated. This is followed by discussions of how
the metrics can be used during evolution, and of the automatic program simplifica-
tion methods that play a role in that usage. We then present our experiments and
their results, and finish with a summary of our conclusions and suggestions for fu-
ture work.

2 Modularity in Genetic Programming

The concept of modularity has long been discussed in genetic programming. John
Koza introduced the concepts of Automatically Defined Functions (ADFs) [3] and
Architecture Altering Operations [4] in tree-based genetic programming that can
be used to evolve reusable modules in the evolving programs. Many other re-
searchers [12] used these concepts to build much more flexible ways of inducing
modularity. Module Acquisition [5], for example, designates a group of nodes in a
tree as a module and protects it from manipulation by genetic operators. Automat-
ically Defined Macros (ADMs) [6] allows for the evolution of macros capable of
altering program architectures. Hierarchical Locally Defined Modules (HLDM) [7]
introduces a hierarchical way of defining and using modules in genetic program-
ming. These and other related methods basically provide function-like templates to
the evolving programs to modify and use during the course of evolution.

Other efforts include designing the genetic programming systems in such a way
that modules can be defined and used within the evolvable code itself, instead of



Title Suppressed Due to Excessive Length 3

being constructed from the templates provided prior to the start of evolution. For
example, in PushGP [13], “code” itself is type, which can be manipulated using
specific instructions. SignalGP [17] is another technique where the program is a
collection of modules. The concept of tags [14], which provides a procedure-calling
mechanism during evolution, has also been introduced to encourage the adoption of
modules.

Although the importance of modules has long been felt and efforts have been
made to help programs acquire modules during the process of evolution, a very few
attempts have been made to actually measure modularity. One such attempt is Func-
tional Modularity [18], which considers modules as functional units and calculates
the modularity based on their performance on a set of test cases. There are certain
other measures of modularity [19, 20], which can only be used for programs that
can be represented as networks.

Despite these efforts, evolving modularity is still termed as one of the open is-
sues in genetic programming [11]. Most of the above-mentioned strategies to evolve
modular programs try to give evolution access to the tools it may need to develop
modules without offering any real incentive to actually use them. Additionally, these
strategies make certain assumptions about the structure of the program, and conse-
quently, some parameters like the number, types, or other information about mod-
ules need to be specified in advance before the evolution can start.

One of the motivations to push genetic programming systems to produce modular
programs is that evolution often prefers non-modular programs. To understand this,
let us look at a hypothetical scenario. Imagine there are two programs with the same
error vectors solving the same problem: one with a module reused multiple times,
and another without any module. During mutation in the first program, if any change
occurs to this module, we would notice a huge change in the error vector, but the
same might not happen in the case of the non-modular program.

Although modularity as a concept is not new to the field of software engineering,
there have not been many attempts at defining modularity in the context of automatic
programming, where instead of humans, machines write the programs. This chapter
discusses the modularity metrics introduced in [9] and proposes the ways in which
they can be used during evolution to incentivize the development of modules.

3 Modularity Metrics

Depending on the field of study, there can be different types of modularity. For ex-
ample, [10] mentions developmental, morphological, evolutionary, and other kinds
of modularity. Also, there are corresponding metrics to measure them. The Q-
metric [19, 20], for example, is used to calculate modularity in networks.

In this chapter, we focus on the concept of modularity used in software engi-
neering. Programmers often employ modules to solve parts of a given problem and
reuse them multiple times to avoid code repetition. They also use many metrics to
calculate the modularity of a given software. Coupling, for example, measures the



4 Anil Kumar Saini, Lee Spector

interdependence between different modules; cohesion, on the other hand, measures
the amount of interaction among components of a particular module [8]. A modular
software design, therefore, is characterized by low coupling and high cohesion.

General-purpose programming languages like Python, Java, etc. contain con-
structs in the form of functions, classes, etc. that can be used to identify a module.
Genetic programming systems, on the other hand, do not have such standard con-
structs and often use different ways of achieving modularity. Due to this, it becomes
difficult to detect modules in different representations in genetic programming, and
the metrics used in software engineering might not work for evolved programs.

Nevertheless, the metrics presented in this chapter are inspired by some of the
concepts used in software engineering like code reusability, component-based de-
velopment, etc. Reuse and Repetition — two metrics presented in this chapter — are
inspired by heuristics humans use to write programs; in order to have less repetition,
they try to reuse their code using features like functions, procedures, etc.

Since we want a formulation that could be used irrespective of the underlying ge-
netic programming system, we use the information contained in the execution trace
of a program to calculate the metrics. Moreover, we maintain that instead of one sin-
gle metric, there can be multiple metrics measuring different aspects of modularity.

In this section, we first define a module in the context of automatic programming.
And then after going over the design principles used to formulate the metrics, we
provide the exact equations to calculate those metrics.

3.1 Module

A module may be defined as a part of the program, which can be used and modified
independently of other parts [9]. For the purpose of this chapter, a collection of
tokens - keywords, variables, constants, etc. can be considered as a module. For a
group of tokens to become a module, however, the following conditions must be
met:

1. The order in which the tokens appear in a module should be the same as the
order in which they appear in the program. For example, if we have a set of
instructions ABC in the execution trace, for it to be considered a module, the
same set of instructions should be present in the program in the same order.

2. The module should have a definite beginning and an end. For a group of instruc-
tions, as in most of the programming languages including Push, this is indicated
by brackets, keywords, or indentations. In the case of single instructions, how-
ever, no such construct is needed.



Title Suppressed Due to Excessive Length 5

3.2 Design Principles for Modularity Metrics

In order to come up with exact formulations for Reuse and Repetition, some design
principles were used. The formulations which were in direct conflict with any of
these principles were rejected, and those which complied with all of them were
taken up for consideration. And the final set of metrics we present in Section 3.4 is
one of them. The design principles are:

1. The frequency with which a module gets executed should contribute more than
its size towards the metrics.

2. All consecutive sub-sequences of a module are also considered as modules. For
example, if ABC is a module, A, B, C, AB, and BC are also modules.

3. Since we are extracting modules from execution traces, there might be some in-
structions in the trace which were not there in the program. This can happen
when an instruction from the program calls instructions from other programs or
libraries. To keep things simple, we will not use such instructions in our calcula-
tion of the metrics.

4. The modularity metrics measure the structural properties of a program. There-
fore, the formulations of these metrics should not take into account the usefulness
or other functional aspects of modules.

5. The modules should appear or be used at least twice for them to be considered in
the calculation. This helps in identifying the boundaries of modules.

6. Since both Reuse and Repetition considers the frequency and size of modules,
and they measure similar properties of modules, they can have similar formu-
lations. They should, however, be independent of each other. In other words, a
program can have a high value of Reuse with a low value of Repetition and vice-
versa.

3.3 Reuse and Repetition

Reuse measures how frequently a copy of a module gets executed. Repetition, on the
other hand, measures how frequently a given module appears in the program. The
main difference between the two is that in the former one, one copy gets executed
multiple times, whereas, in the latter, there are already multiple copies present in the
program, each of which gets executed once.

A program will have high reuse if it has a function that is called repeatedly or a
block of code that gets iterated multiple times. The program will have a high value
of repetition if the same set of instructions are written multiple times and executed
separately.



6 Anil Kumar Saini, Lee Spector

3.4 Reuse and Repetition from Execution Trace

An execution trace is the sequence of instructions arranged by the order in which
they are executed. This sequence is often different from the actual program since
the instructions at a particular position (say, a line number) in the program can call
instructions at other locations.

As previously described in [9], the procedure to calculate the modularity metrics
from the execution trace is as follows.

1. Assign an identifier to every token in the program. For simplicity, let this identi-
fier be the position of the token in the program.

2. Execute the program. Maintain two traces, one with instructions (called the exe-
cution trace) and the other with identifiers (called the metadata trace). During the
course of execution, if we come across an instruction that was not present in the
program, we give it a special identifier. Such instructions will not be considered
while computing the metrics.

Usually, in order to calculate error vector of a given program, it is executed on
a set of test cases. Consequently, we have multiple executions traces for a single
program. And since the metrics are calculated on the execution traces, we will have
a list of values instead of a single number for each metric. To simplify this, we can
use one of the two approaches: use summary statistics (for example, mean, max,
etc.), or choose a value randomly from the list. As mentioned above, we will have
two types of traces after the program gets executed. From these traces, modules can
be extracted in many ways. For the sake of simplicity, a module is any group of
instructions or identifiers that is repeated at least twice in the respective trace.

Now, a simple and naive way to quantify the amount of reuse and repetition is
to compute the proportion of execution trace under reuse or repetition. The corre-
sponding formulation for Reuse (U) and Repetition (P) would be:

U =
∑

m
i=1 li · fi

l
(1)

and

P =
∑

n
i=1 li · fi

l
, (2)

where there are m modules being reused, n modules being repeated, li and fi are
respectively the length and size of a module i, and l is the length of the trace. The
length of the trace is simply the number of instructions present in it. Moreover, both
traces have the same length. The main issue with this formulation is that they give
equal weight to the size and frequency of the module, which is in direct contradiction
to the design principles given in Section 3.2.

After increasing the weight of the frequency and normalizing it accordingly, an-
other possible formulation can be:



Title Suppressed Due to Excessive Length 7

U =
∑

m
i=1 li ·2 fi

2l (3)

and

P =
∑

n
i=1 li ·2 fi

2l . (4)

This formulation is also problematic. Since the measures give more importance to
the frequency of usage (exponentiation) than to the length of a module (simple mul-
tiplication), we get higher value of Reuse when we have more frequent modules
in an execution trace of a given length. In other words, as the length of the trace
increases, the reuse measure starts to prefer short and frequent modules over big-
ger and less frequent ones. Table 1 illustrates this point. Although intuitively reuse
should increase since the module ABC is getting reused more often, the actual reuse
calculated from Equation 3 is decreasing. Similar issues occur during Repetition
calculations.

Table 1 Reuse values of some toy examples calculated using Equation 3. Each letter denotes an
instruction in the execution trace.

Execution Trace Reuse Value
ABCABCDEF 0.078125
ABCABCABCDEF 0.01953125
ABCABCABCABCDEF 0.0048828125
ABCABCABCABCABCDEF 0.001220703125

The final formulations change the denominator to remedy this. The following
equations are simplified versions of the equations given in [9]:

U =
∑

m
i=1 li ·2 fi

2u (5)

and

P =
∑

n
i=1 li ·2 fi

2v . (6)

where u is the number of unique identifiers used in the metadata trace, and v is
the total number of instructions of the program used in the execution trace. These
numbers can be different from the length of the program as some instructions get
executed multiple times, and some might not get executed at all due to conditional
operations.

While we presented general formulations of the metrics in this section, the exact
procedure to extract modules from the evolving programs depends on the language
in which they are represented.



8 Anil Kumar Saini, Lee Spector

4 Using Modularity Metrics to Guide Evolution

Every program generated by genetic programming has certain ‘Software Quality
Features.’ One of these features is correctness (errors on test cases). Although cor-
rectness - which focuses only on the ‘output’ of a program, not its ‘structure’ - might
be the most important feature, it is not the only one. There are many other features
that focus on the structure of the generated programs. In this chapter, we will term
these features ‘design features’ and differentiate them from ‘correctness features.’
We will use error on test cases as correctness feature and modularity metrics as
design features.

In this section, we will explore ways to combine modularity metrics with errors
of individuals to guide the evolution of programs.

4.1 Using Design Features during Parent Selection

The procedure to combine design features with error values will be different for
different parent selection methods. Here, we describe the procedure with lexicase
selection [15]. What we essentially aim to do is to have additional pressure to prefer
more modular programs during parent selection.

In each iteration of Lexicase selection, the test cases (or, the error values on test
cases) are shuffled in random order. The design features can be sorted among these
error values in one of the following ways:

1. The first option is to shuffle error values and design features together.
2. The second option is to consider design features after error values. What this

means is that out of two individuals, one with higher values of design features
would be preferred over the other only if they both have the same error values.

3. The third option is to consider design features before error values. What this
means is that out of two individuals, one with higher values of design features
would always be preferred over the other, irrespective of error values.

We note that modularity metrics are used during selection just like normal error val-
ues, but they are not taken into consideration when determining whether a program
is a solution to a problem or not.

Another method of using modularity metrics to guide the evolution of modular
programs is to filter out individuals with low values of modularity metrics from the
population before the parent selection commences.

4.2 Using Design Features during Variation

Modularity metrics can also be used to guide the mutation and crossover opera-
tors. For example, the values of reuse and repetition can serve as inputs to a given



Title Suppressed Due to Excessive Length 9

variation operator, and the rate and other parameters of variation can be decided ac-
cordingly. Additionally, instead of applying a variation operator uniformly, we can
use the reuse and repetition values of the parts of a program to decide the location
of variation.

5 Experiments and Results

In this section, we describe the experiments that were conducted to investigate the
effects of using modularity metrics as design features. We run our experiments on
Clojush1 (Clojure implementation of PushGP) which evolves programs in a stack-
based programming language called Push. Since calculating modularity metrics
is time-intensive, we decided to use the problem of symbolic regression because
of its faster runtime per generation compared to other more complex problems.
Specifically, we try to evolve programs to compute the mathematical expression
of (x3 +1)3 +1.

Before presenting our experimental set-up, we first describe the procedure to
extract from Push programs the modules to be used to compute the metrics. We
also introduce the concept of autosimplification as a way to remove unnecessary
instructions from the programs prior to calculating metrics.

5.1 Extracting Modules from Push Programs

As mentioned in Section 3.4, the procedure to retrieve modules from the execution
trace of a given program depends on the language in which the program is repre-
sented. Since we are using PushGP in our experiments, we present the algorithm to
extract modules from Push programs running on that system. The same procedure
can be used for other systems with minimal changes.

Push is a stack-based programming language with separate stacks for every data
type [13]. During execution, the instructions can take their inputs from and place
their outputs on different stacks. In each iteration, the top element of the execution
stack gets executed. Hence, the sequence of the top elements on the execution stack
after every iteration becomes the execution trace.

Algorithm 1, which describes the procedure to calculate the metrics for Push
programs, can also be used for programs written in similar stack-based program-
ming languages. Table 2 gives an example of Push program and the corresponding
execution and metadata traces.

We first covert the metadata trace into a different representation in the following
way. A single instruction is represented as [a:a] where a is the identifier of that
instruction. A group of instructions inside parentheses, with the identifier of the first

1 https://github.com/lspector/Clojush



10 Anil Kumar Saini, Lee Spector

instruction being a and that of the last one being b, is represented as [a:b]. Ad-
ditionally, modules in an execution trace are called instruction-modules (for exam-
ple, (exec dup (exec swap 1 2)) ), and those in metadata trace are called
identifier-modules (for example, [1:4]).

Table 2 A Push program example and the corresponding execution and metadata traces.

Program (exec dup (exec swap 1 2))
Execution Trace ((exec dup (exec swap 1 2)) exec dup (exec swap 1 2)

exec swap 2 1 (exec swap 1 2) exec swap 2 1)
Metadata Trace ((1 (2 3 4)) 1 (2 3 4) 2 4 3 (2 3 4) 2 4 3)
Metadata Trace
(modified)

([1:4] [1:1] [2:4] [2:2] [4:4] [3:3] [2:4] [2:2]
[4:4] [3:3])

To extract modules for Reuse, we use the metadata trace. In each iteration
of the outer loop, we search the metadata trace for modules of a certain size.
Whenever we find a module of size s, from the next (s+ 1) modules in the trace,
we collect the ones which are ‘included’ in the bigger module. For example,
if [1:4] is the module under consideration, the modules [1:1], [1:3],
[2:4], etc. are considered to be ‘included’ in the bigger module. Before deleting
these smaller modules from the metadata trace, we use them to find modules
containing consecutive identifiers as follows. AllContinuousSeqs() takes a set
of identifier-modules, and output those proper subsets which contain consecutive
identifiers. For example, if the input is {[2:2],[3:3],[4:4], [6:8]},
it will output {([2:2]), ([3:3]), ([4:4]), ([2:2], [3:3]),
([3:3],[4:4]), ([2:2],[3:3],[4:4]),([6:8])}. This is in tune
with the design principles described in Section 3.2, which allows the subsets of
modules to be considered as modules as well. Following this procedure, we will
have a list of modules at the end of the outer loop. And the modules which appear
at least twice in this list will we considered for computing Reuse.

Now, to get instruction-modules for Repetition calculation, we first get unique
identifier-modules from the list described above, and look for the corresponding
instruction-modules in the execution trace. From these modules, the ones which
are repeated at least twice are considered for computing Repetition. Note that only
the modules containing the same set of instructions with different identifiers are
considered for calculating Repetition.

5.2 Autosimplification

Sometimes, the programs evolved by a given genetic programming system contain
many instructions that do not contribute to its performance on test cases. In other
words, some code elements can be removed from a program without affecting its
performance on test cases. While these unnecessary instructions do not affect the
overall error vector of the program, they can reduce the accuracy of modularity met-



Title Suppressed Due to Excessive Length 11

Input: execution trace of the program containing instructions;
metadata trace of the program containing corresponding identifiers;

Result: Reuse and Repetition values
mTrace := modified metadata trace (see Table 2 for an example);
len := length of mTrace;
seqs := an empty set;
for i = 1,2,3...len do

for module [m:n] in mTrace do
if n−m == i then

temp items := take the next (i+1) items [m j,n j] from mTrace provided
[m j,n j] 6= [m,n] and m j ≥ m, and n j ≤ n ;

temp items := sort the items by the first element of each pair;
seqs := seqs + AllContinuousSeqs(temp items);
delete these items from mTrace;

end
end

end
seqs for reuse = seqs after removing the identifier-modules appearing only once;
use Equation 5 to calculate Reuse;
seqs for repetition = unique identifier-modules from seqs;
get the corresponding instruction-modules and their frequencies;
use Equation 6 to calculate Repetition;

Algorithm 1: Calculating metrics for Push programs

rics. Hence, we perform two sets of experiments, one where we calculate the metrics
on non-simplified programs, and the other where we calculate them on simplified
ones.

Algorithm 5.2 gives a simple procedure to automatically simplify a given Push
program with certain number of steps. Although the procedure can produce different
simplified programs each time it is run, the prior work shows that it often produces
consistent results in practice. For programs written in other languages, similar algo-
rithms can be developed.

5.3 Experimental Set-up and Results

As discussed in Section 4, there are multiple ways of using the modularity metrics to
incentivize the development of modules in evolving programs. In our experiments,
we focus on using the metrics during lexicase selection.

We follow the procedure laid down in Section 4.1. Prior to parent selection, we
first compute the error on a set of test cases. Then to calculate the metrics, we choose
a test case randomly from the list of test cases, execute the program on that test case,
and then use the execution trace so obtained to compute the metrics. During lexicase
selection, we shuffle the errors and metrics together for every selection event. In
addition to individuals with low errors, we prefer the ones with high values of Reuse
and low values of Repetition.



12 Anil Kumar Saini, Lee Spector

Input: the program to be simplified;
number of steps;

Result: simplified program
repeat

rand := a random number between 0 and 1;
if rand < 0.5 then

remove a small number (typically 1 or 2) of random instructions;
else

remove a random parenthesis pair;
end
calculate the error vector on new program;
if error vector is same as before then

update the program;
else

revert to the original;
end

until the step limit is reached;
Algorithm 2: Auto-simplification

We perform four sets of experiments with 30 runs in each set: without using
any metrics, using only reuse metric, using only repetition metric, and using both
the metrics. In these experiments, the metrics are calculated on non-simplified pro-
grams. The parameters used during the runs are listed in Table 3. To deal with
floating-point numbers, we use ε-lexicase [16] parent selection algorithm. We do
not perform crossover and instead use UMAD (Uniform Mutation by Addition and
Deletion)[21] mutation operator. During evolution, the programs have access to all
the instructions that operate on float and execution stacks.

Table 3 Genetic Programming Parameters.

Parameter Value
Population size 1000
Number of generations 500
Parent selection algorithm ε-lexicase
Mutation operator Uniform Mutation by Addition and

Deletion
Mutation rate 0.09
Number of runs per condition 30

The results are given in Table 4. The number of successes is the number of runs
out of 30 that evolved a successful program passing all the test cases. The size of
a push program is the total number of instructions and parenthesis pairs present in
it. In addition to presenting the average size of successful programs, we also show
the average size of successful programs after simplification so as give a sense of
the proportion of nonessential instructions in them. To test statistically significant
differences, we used pairwise comparisons for proportions for success rates and the
Mann-Whitney-Wilcoxon Test for the sizes of successful programs. From the table,



Title Suppressed Due to Excessive Length 13

it is clear that using reuse as a design feature makes the successful programs smaller,
without significantly affecting the success rate. However, when we use repetition
metric either separately or with reuse, we get larger programs without any significant
difference in success rates. This might be due to the fact that, in order to have a low
value of repetition, the programs can often have useless instructions, which basically
makes the execution traces bigger and hence increase the denominator in Equation
6. This is well supported by the last two rows of the table, where the difference
between the sizes of programs before and after simplification is very large.

Table 4 Using metrics as design features. The metrics have been calculated on non-simplified
programs. The underline indicates that the value is significantly smaller than the corresponding
value in the no-intervention case.

Number of successes Average size of success-
ful programs

Average size of success-
ful programs after sim-
plification

No intervention 12 43.08 20.42
Reuse only 12 31.00 14.67
Repetition only 5 60.80 26.8
Both metrics 7 58.71 11.86

To restrain the modularity metrics from preferring programs with more nonessen-
tial instructions, we used the concept of autosimplification as discussed in Section
5.2. In other words, prior to calculating the metrics, we simplified the program with
the number of simplification steps being 50. Accordingly, we performed 30 runs for
each of the conditions mentioned earlier. The results are given in Table 5. Although
we do see a slight improvement in the success rate while using the reuse metric, the
results are very similar to Table 4. We still get large programs while using the repeti-
tion metric as we did before. As a future work, we can either explore increasing the
number of simplification steps or use some other mechanism to rein in the increase
in the program size when using the repetition metric.

Table 5 Using metrics as design features. The metrics have been calculated on simplified pro-
grams, with the number of simplification steps being 50. The underline indicates that the value is
significantly smaller than the corresponding value in the no-intervention case.

Number of successes Average size of success-
ful programs

Average size of success-
ful programs after sim-
plification

No intervention 12 43.08 20.42
Reuse only 17 34.12 17.71
Repetition only 5 67.00 23.8
Both metrics 5 62.80 8.6

From the results described above, it can be concluded that the best results are
obtained by computing the reuse metric on simplified programs and using it as a
design feature in lexicase selection. However, these results are preliminary in nature



14 Anil Kumar Saini, Lee Spector

and are mainly intended to show how the modularity metrics can be used in the
evolutionary framework.

6 Conclusions and Future Work

In this chapter, we first discussed a set of modularity metrics - reuse and repetition -
that measure different aspects of modularity. We then presented multiple schemes of
using these metrics in the framework of evolving programs. We demonstrated one
of these ways by computing the metrics on Push programs and using them as design
features in lexicase selection. We presented some preliminary results which show
that using the reuse metric gives us more compact successful programs.

We use symbolic regression in our experiments, which is very easy to solve and
might not even benefit from having modules. Therefore, as a future work, we need
to run the same set of experiments on more complex problems like the ones from the
benchmark suite of [2]. We can further optimize the whole procedure to calculate
the metrics and also explore other methods of using them mentioned in Sections 4.1
and 4.2.

While the metrics presented in this chapter focus only on the structure of mod-
ules, new metrics that take into account the usefulness of those modules in solving
different test cases can also be added to the metrics suite.

Considering almost all complex systems around us are modular in nature, we
might benefit substantially from encouraging modularity in genetic programming
systems if we want to synthesize programs as complex as the ones written by hu-
man programmers. We also believe the lessons learned from employing modularity
metrics in the evolutionary framework can help us develop the tools to tackle some
of the most difficult and unsolved problems in genetic programming. Further exper-
iments to investigate the utility of modularity in the evolution of programs may also
shed some light on the role of modularity in the evolution of biological systems.

Acknowledgements This material is based upon work supported by the National Science Foun-
dation under Grant No. 1617087. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

1. Clune, J., Mouret, J. B., & Lipson, H. (2013). The evolutionary origins of modularity. Pro-
ceedings of the Royal Society b: Biological sciences, 280(1755), 20122863.

2. Helmuth, T., & Spector, L. (2015, July). General program synthesis benchmark suite. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation (pp.
1039-1046). ACM.

3. Koza, J. R. (1992). Genetic programming: on the programming of computers by means of
natural selection (Vol. 1). MIT press.



Title Suppressed Due to Excessive Length 15

4. Koza, J. R. (1994). Architecture-altering operations for evolving the architecture of a multi-
part program in genetic programming.

5. Angeline, P. J., & Pollack, J. (1993, February). Evolutionary module acquisition. In Proceed-
ings of the second annual conference on evolutionary programming (pp. 154-163).

6. Spector, L. (1995). Evolving Control Structures with Automatically De ned Macros. In Sub-
mitted to the 1995 AAAI Fall Symposium on Genetic Programming.

7. Banzhaf, W., Banscherus, D., & Dittrich, P. (1999). Hierarchical genetic programming using
local modules. Secretary of the SFB 531.

8. Dhama, H. (1995). Quantitative models of cohesion and coupling in software. Journal of
Systems and Software, 29(1), 65-74.

9. Saini, A. K., & Spector, L. (2019). Modularity Metrics for Genetic Programming. In
Genetic and Evolutionary Computation Conference Companion (GECCO 19 Compan-
ion), July 1317, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3319619.3326908

10. Callebaut, W., Rasskin-Gutman, D., & Simon, H. A. (Eds.). (2005). Modularity: understand-
ing the development and evolution of natural complex systems. MIT press.

11. ONeill, M., Vanneschi, L., Gustafson, S., & Banzhaf, W. (2010). Open issues in genetic pro-
gramming. Genetic Programming and Evolvable Machines, 11(3-4), 339-363.

12. Gerules, G., Janikow, C. (2016, July). A survey of modularity in genetic programming. In
2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 5034-5043). IEEE.

13. Lee Spector. 2001. Autoconstructive evolution: Push, pushGP, and pushpop. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO- 2001), Vol. 137.

14. Spector, L., Martin, B., Harrington, K., Helmuth, T. (2011, July). Tag-based modules in ge-
netic programming. In Proceedings of the 13th annual conference on Genetic and evolution-
ary computation (pp. 1419-1426). ACM.

15. Helmuth, T., Spector, L., & Matheson, J. (2015). Solving uncompromising problems with
lexicase selection. IEEE Transactions on Evolutionary Computation, 19(5), 630-643.

16. La Cava, W., Spector, L., Danai, K. (2016, July). Epsilon-lexicase selection for regression. In
Proceedings of the Genetic and Evolutionary Computation Conference 2016 (pp. 741-748).
ACM.

17. Lalejini, A., Ofria, C. (2018, July). Evolving event-driven programs with SignalGP. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (pp. 1135-1142). ACM

18. Krzysztof Krawiec and Bartosz Wieloch. 2009. Functional modularity for ge- netic program-
ming. In Proceedings of the 11th Annual conference on Genetic and evolutionary computa-
tion. ACM, 9951002.

19. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the
national academy of sciences, 103(23), 8577-8582.

20. Qin, Z., McKay, R., & Gedeon, T. (2018). Why don’t the modules dominate-Investigating
the Structure of a Well-Known Modularity-Inducing Problem Domain. arXiv preprint
arXiv:1807.05976.

21. Helmuth, T., McPhee, N. F., & Spector, L. (2018, July). Program synthesis using uniform mu-
tation by addition and deletion. In Proceedings of the Genetic and Evolutionary Computation
Conference (pp. 1127-1134). ACM.




